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ABSTRACT We describe a modified attractor neural net-
work in which neuronal dynamics takes place on a time scale
of the absolute refractory period but the mean temporal firing
rate of any neuron in the network is lower by an arbitrary
factor that characterizes the strength ofthe effective inhibition.
It operates by encoding information on the excitatory neurons
only and assuming the inhibitory neurons to be faster and to
inhibit the excitatory ones by an effective postsynaptic potential
that is expressed in terms of the activity of the excitatory
neurons themselves. Retrieval is identified as a nonergodic
behavior of the network whose consecutive states have a
significantly enhanced activity rate for the neurons that should
be active in a stored pattern and a reduced activity rate for the
neurons that are inactive in the memorized pattern. In contrast
to the Hopfield model the network operates away from fixed
points and under the strong influence of noise. As a conse-
quence, of the neurons that should be active in a pattern, only
a small fraction is active in any given time cycle and those are
randomly distributed, leading to reduced temporal rates. We
argue that this model brings neural network models much
closer to biological reality. We present the results of detailed
analysis of the model as well as simulations.

Section 1. Introduction

Increased activity in the study of properties of attractor
neural networks (1-3) has brought about increased pressure
for more direct contact with experiment.§ Such contact may
be envisaged on the neurophysiological level (4) or alterna-
tively on the psychological-computational level (5-7). Here
we describe a reformulation of the Hopfield model (1) in an
attempt to narrow the gap between model attractor neural
networks and neurophysiological reality. It is gratifying that
despite the richer context captured by the present version its
effective dynamics is still quite simple and given to analysis
by minor extensions of previously developed techniques (8).
A few of the main "biological" objections to the standard

model can be paraphrased as follows.
1. Observed firing rates of neurons in the cortex are very

significantly lower than implied by the model. This
holds both for spatial and for temporal rates.

2. Excitation and inhibition in the cortex (i) are affected by
different sets of neurons, (ii) have different physiolog-
ical characteristics, and (iii) have qualitatively different
roles.

3. The synaptic matrix in the models has an awkward
feature in that pairs of neurons that are inactive in a
memorized pattern have an enhanced excitatory syn-
aptic weight.

4. There is an artificial symmetry between firing and
nonfiring neurons in the dynamics of the network.

Some aspects of the above list have been dealt with
previously. Low spatial firing rates, the fact that usually only
a small fraction of the neurons emit bursts, have found
various solutions (9-12). But little or no progress has been
made on the temporal side. Excitation and inhibition have
been separated into different classes of neurons in the net-
work, by diluting the synaptic network of the Hopfield model
(13), but their roles have been kept equivalent. Some early
studies of neural networks (14) avoid the artificial feature of
excitatory connections associated with correlated inactivity
in learned patterns. They do not, however, opt for an
attractor interpretation of their function but are single layer
classifiers. Finally, some attention has recently been paid to
the distinction between firing and nonfiring neurons (11, 12).
The emphasis has been on the marked enhancement in
storage capacity that such representations provide. Yet they
operate with functionally equivalent excitatory and inhibi-
tory synapses.
The most apparent flaw in the above critical list-the one

most directly observable-is that of the temporal spike rates.
The basic model (1) discretizes time in units of the order of
the absolute refractory period, which is 2-3 ms. Retrieval is
identified with the arrival of the network at an attractor and
the interpretation is that some set of neurons, corresponding
to a memorized pattern, emit a spike in every time slice and
the other neurons in the network remain essentially quies-
cent. Alternatively, if the interpretation is in terms of firing
rate, the attractors represent states of the attractor neural
network in which the same class of neuron fires at maximal
frequency and the others fire at very low frequency. Thus the
arrival at an attractor, the elementary cognitive event, should
be identifiable by the appearance of rates of 300-500 s'1,
which could be easily observable even by single electrode
probes.

Empirically one observes in associative parts of the cortex
that when rates actually rise significantly above the sponta-
neous rate of single spikes per second, in the course of an
associative event, they reach 100 s-l in some areas (15-17)
and 30-40 s-5 in others (18). If the attractor interpretation is
to be sustained the gap of a factor 5-10 in rate must be
bridged. Attempts to account for this gap by modifications of
the neural response functions lead to rather implausible
characteristics of neurons. The model described here is an
attempt to account for this gap in terms of collective network
properties by taking into account the whole spectrum of
features mentioned in the critical list. We have not tried to
find a minimal set of modifications since all these modifica-
tions seemed desirable.
Coming back to item 2 above, we observe that the sepa-

ration of inhibition and excitation into separate groups of
neurons goes beyond the neurochemical Dale principle (19).
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Usually, pyramidal cells, which are excitatory, predominate
in number. Moreover, they are the ones that communicate
from one region to another, while inhibitory (stellate) neurons
act locally. One might conjecture that information is repre-
sented only on the first and that the latter have a subservient
role of keeping firing rates where they belong. Second, it is
often conjectured that plasticity is most likely to take place
around the spines of excitatory neurons, which suggests that
most of the synaptic structure should be in the excitatory-
excitatory connections. Third, the action of an inhibitory
neuron at a synapse differs from that of an excitatory one in
that it is much stronger. Sometimes (20) it is described in
terms of shunting, though it may be effectively described by
particularly high synaptic efficacies.$ Finally, the local na-
ture of the distribution and communication of inhibitory
neurons may indicate that they may learn about the distri-
bution of activity among the excitatory neurons faster than
the excitatory ones do and may react on the excitatory ones,
in an inhibitory fashion, within a typical time interval in
which the excitatory neurons are finding out about the
distribution of their own activity.

Section 2. Modified Attractor Neural Network

2.1. The Excitatory-Excitatory Network. In light of the
above comments we proceed as follows. The network will
consist ofN excitatory neurons and the memorized patterns
will be p activity distributions of these N neurons. Time will
be discretized, as usual, in units of the absolute refractory
period and a state of the network will be described as an N-bit
word of zeros and ones. A 1 at neuron i will be interpreted as
a spike having been emitted in the corresponding time slice.
The patterns will also be words ofN (0, 1)s. The different bits
in a pattern are random and each bit By, the state of the ith
neuron in the ,uth pattern is selected with the distribution
P(r = 1) = a, where a (O c a s 1) is a parameter that
represents the spatial mean activity in a retrieval state. As we
shall see below, the instantaneous spatial rates will be much
lower. The synaptic matrix connecting the excitatory neu-
rons i and j will be more closely Hebbian-i.e.,

p

J Na2g=17'[1
which is composed of contributions of zeroes and ones only
and avoids the non-Hebbian feature of item 3. The excitatory
postsynaptic potential at neuron i will be

N

h9= ZJ(,Vj. [2]
jAi

2.2. The Inhibition. The influence of the inhibitory neurons
will be incorporated in an effective way, expressed in terms
of the activity of the excitatory ones. If inhibitory neurons
can react faster, their effect on the potential of the excitatory
ones can be expressed in terms of the activity variables of the
excitatory neurons themselves. We will therefore postulate
that the inhibitory contribution to the postsynaptic potential
of excitatory neuron i is given as

(A= p) = N

[3]

The first factor is a constant, dependent only on the receiving
neurons. Its particular structure is chosen to facilitate our
analysis. The function F represents the mean activity of the

$We owe this observation to H. Sompolinsky.

inhibitory neurons and depends on a weighted average of the
spiking activity in the excitatory ones.
The function F is a nonlinear function of its variable. When

it is expanded in a power series one observes that the
constant term is a threshold and the first-order term acts as
an inhibitory contribution to the field of Eq. 2. The first
unusual term is the quadratic one. We shall therefore focus
our discussion on the effects of this term. The total postsyn-
aptic potential arriving at an excitatory neuron following a
given activity distribution among them will then be

N P

hi= Na2 -Vi
il'i Na2 A=1

N1p a3p p NV/V2pia3 A=1 EEL~ Vj l
2 [4]

where the coefficient of the quadratic term has been written
in a particular normalized way and the new free parameter is
P. It will play the central role in what follows. The negative
sign has been chosen to make explicit the inhibitory nature of
this contribution. Note that the inhibitory term looks like a
triadic synaptic connection, for which the potential received
by neuron i depends on the correlation of the activities of
pairs of other neurons. We do not imply the necessity of such
connections. They arise out of the indirect nonlinear effect of
the faster inhibition. The expectation that inhibitory effects
are stronger will allow us to obtain low firing rates which
require low values of v, see below. The detailed synaptic
structure may appear somewhat contrived. This is intended
to facilitate analysis. Since, as we shall see below, the
network will preferably function under rather noisy condi-
tions, random changes in the synapses should not be of great
import.

2.3. The Dynamics and the Relevant Parameters. The pre-
scription Eq. 4 has to be supplemented with a dynamical rule
to complete the description of the network. This will be noisy
threshold dynamics-i.e.,

Pr(V,(t + 1) = 1) = [exp(-,3hi) + 1]-
[= 1 - Pr(Vi = 0)], [5]

with hi computed on the basis of the configuration at time t
(21). The parameter T = f3-1 is a measure of the amount of
noise. This dynamical system produces a stochastic trajec-
tory of network states from any initial distribution of spiking
activity of the excitatory neurons. The nonergodic behavior
of such a network is the potential basis for associative
memory, as in the standard model (see, e.g., ref. 3).
To classify the nonergodic behavior we define a set of

parameters (order parameters) that characterize the cooper-
ative properties of the network. These will be the overlaps
(retrieval quality) with the stored patterns

N

Xv = 1- n,),
Na i=l

[6]

where () indicates a temporal average, the total activity in the
network,

and finally

N

N=-E(vi), [7]

N

y = - L(V)2.
Ni=l

[8]

The overlap parameters are somewhat different from those
used for the Hopfield model. They measure the similarity of
a state to a pattern only among the neurons that are expected
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to be active in the stored pattern. In fact 0 -< xL 1. As for
y, it measures the degree of "freezing"-i.e., y x implies
that the same neurons fire in consecutive time steps while y

x2 implies that the mean activity level is produced by totally
uncorrelated neurons at different time steps.

Section 3. The Scenario

Low temporal firing rates are to be expected according to the
following scenario: When a pattern (no. 1) is retrieved

1. a fraction x1 >> x of the neurons corresponding to the
ones in that pattern will be active at every instant,

2. xl << xl for ,u 4 1,
3. only a small fraction ofthe neurons that should be active

in a pattern is indeed active at any moment; i.e., x1 <<
1, and

4. the fraction of active neurons in each of the two groups,
corresponding to the ones and the zeros in pattern 1,
respectively, are uncorrelated at different instants in
time. This can be expressed in terms of y, as the
condition

y = a(xl)2 + (1-a)(xl)2. [9]

The first two items reflect the requirement that retrieval be
unambiguous. They imply that the fraction of active neurons
among those that should be quiescent in the retrieved pattern,
given by

N

1 - ,(1- r7)(V,) = x_ (xl - x) [10]
(1-a)N i=1 1-a

be much smaller than xl. The last two are our way to low
rates. Since if the fraction ofxi neurons that should be active
is uncorrelated from one instant to the next, due to noise of
course, then the mean temporal rate of these neurons will
be simply xl times the basic rate. On the other hand, if the
same holds in the neurons of the second group, then their
temporal rate will be reduced by a factor of xl, which
according to Eq. 10 is much lower.
To compare and contrast this scenario with the perfor-

mance of a Hopfield network, note first that the essential
similarity is in the fact that retrieval is defined as the
appearance of a temporal sequence of network activity
states, all unambiguously correlated with a stored pattern.
That pattern is said to be associatively retrieved by the
stimulus. But in a Hopfield network the activity state is
essentially the same throughout the sequence, with at most a
small fraction of the neurons changing their state from one
time step to the next. Here, instead, the state of the network
changes completely at each time step, and the only feature
subsequent states have in common is their distinctively high
correlation with the stored pattern being retrieved. To bring
out the full picture coded in the pattern the activity must be
averaged over a few mean spike intervals. But this is similar
to the duration required for establishing that an attractor has
been reached (see, e.g., ref. 3).

This contrast is reflected in our attitude to noise. It is fast
noise that produces this ever-changing instantaneous firing
configuration, by determining which neurons, among those
that have received an adequate input, will actually fire at any
given time. If this noise were to decrease, the network would
stop functioning properly, not because of spurious attractors
(22), but rather because some particularly excitable neurons
would "freeze" in their firing state, and thus appear to fire at
inordinately high rates. Thus, for example, the question of
storage capacity as discussed previously (9, 22) becomes
meaningless, since the model will not be operated without

noise. Capacity will be a function ofthe desired temporal rate
and of the noise level within its permissible window.

Section 4. Performance of the Network

The description of the performance of the network becomes
particularly simple when it is assumed to contain a very large
number of neurons N and to store a large number of patterns
p. The ratio a = p/N will be finite and sometimes very small,
in the limit N -- oo.

4.1 Qualitative Behavior. At very high noise levels, T(=
1/) >> p, the network is ergodic and each neuron has a
probability 1/2 offiring at any instant. Then, xA = x = 1/2 and
y = 1/4. As the noise decreases the network remains er-
godic-i.e., xg = x and y = x2-but the values of these
variables begin to decrease. At noise levels oforder unity, but
above TR, the network is ergodic but xg = x = v and y = A2.
The lower v, the stronger the effective inhibition, and the
lower the uniformly distributed activity which is reached by
the network independently of the initial conditions. This
freezing ofthe mean activities is represented at the top of Fig.
1, which was obtained as a solution of the full equations for
the system; it will be rationalized in Section 4.3 below and
was derived in a technical account (23).

Following the long inhibition-controlled ergodic region, at
T = TR(a, v) retrieval appears discontinuously. A new noise
window opens up bounded from below by T = TG(a, v) (Fig.
1). In this noise range ergodicity is broken. Following a short
transient, and depending on the initial state of the network,
one pattern is clearly distinguished. While the overall mean
activity is still controlled by the inhibition (i.e., x = v), xi
becomes larger and xl, much smaller than v. For the other
patterns x' = v. That is to say, the memory structure
manifests itself by the selection of one pattern for which the
activity among the neurons corresponding to ones in the
pattern increases at the expense of the activity of neurons
corresponding to zeros in the same pattern. The total activity
is kept constant. The disordered state remains for a while an
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0.0 0.1 0.2 0.3 0.4 0.5
xl

FIG. 1. Overlap with the retrieved pattern, x1, as a function of
noise level T. -, Result obtained by solving the mean field equations
in the limits indicated; x, sample results of simulations.
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attractor, as in the standard model (9). It is destabilized below
a noise level Tc (Fig. 1).
The scenario is fully realized in this noise window if a is

very small. First, we find that Eq. 9 is satisfied, implying that
the active neurons fire in an uncorrelated fashion and the rate
is reduced by the factor xl. If one chooses v < a then one
always has x1 < v/a, which is the asymptote of the x - T
curve in Fig. 1, as T -* 0. The initial value of xl, as T goes
below TR is already significantly greater than v and it in-
creases as the noise is lowered. For a = 0.2 and v = 0.04, for
example, we find x1/v = 3.5. For this value of xl one has,
by Eq. 10, xl = 0.015, which is much smaller than xl. Thus
we fix the spontaneous rate at the level of xl, which can be
made very low, since it goes to zero as xl approaches its
asymptotic value of p/a, linearly in (v/a) - xl. While xl never
reaches this asymptotic value, because TG intervenes as T is
lowered, it does approach rather close, as is shown by the
example mentioned above in which, when T TG, (v/a) - Xi

0.002 and xl 0.0005. Thus retrieval is unambiguous. For
finite small a this picture persists approximately, with cor-
rections ofO(a) to Eq. 9. Such corrections imply a nonuni-
form distribution of firing rates in the two groups of neurons
whose width is O(Va). Another bonus of this model is the
absence of the doubling of the memory states due to the
symmetry between active and passive neurons.
When noise is lowered below TG freezing sets in even at very

very low values of a, as is manifested by the violation of Eq.
9. In fact, y increases above the random value ofthe right-hand
side of Eq. 9. This has two negative effects. Some neurons fire
at a rate that is too high. But in addition static errors will appear
in retrieval, and freezing means also that some ofthe 1-neurons
in the pattern may never fire, while some ofthe 0-neurons will
fire at high rate. (At TG the network undergoes a spin-glass
transition in the limit of a -* 0.)

4.2. Simulations. Simulations confirm the picture emerging
from analysis of the mean-field equations. At high levels of
noise the network wanders freely among the states, indepen-
dent of the initial configuration, and all the overlaps with the
stored patterns are equal to the mean firing rate. Below a
critical noise level ergodicity is broken and the system flows
toward the attractor corresponding to the pattern that has the
highest overlap with the initial configuration, and its stochas-
tic wandering is restricted to this valley. If the initial config-
uration had equal overlap with all the patterns, one of them
is selected at random. At low noise levels the network
progressively freezes into one of the many states in which a
small fraction of neurons fires at maximum rate.
As the noise is lowered one observes the much higher

sensitivity of the present network (compared to the Hopfield
one) to effects of finite size, which are to be expected. For
example, the control of the level of activity requires p to be
large, but this conflicts with the requirement thatp/Nbe small,
to reduce the level of slow noise introduced by high loading.
[Finite-size effects have been discussed in detail elsewhere
(23).] The mean-field equations represent the limit of the
infinite system and hence quantitative differences appear
when p and N are finite. Typical values were p 50-200, N

10,000-50,000. In particular the critical noise levels are
shifted from their asymptotic values, as are the equilibrium
values ofx, xg, etc; Eq. 9 is satisfied only approximately. Such
effects can be accounted for by extensions of the analysis.

In Fig. 2 we present a sample simulation. Note that if the
basic cycle time is 2.5 msec, the mean rate of the active
neurons in the case shown is of 80 spikes per sec.
Because of the finite size not all neurons exhibit the mean

rate. Some lapse into undesirably high rates. If the model
were to describe a realistic neural system such effects would
have to be expected. At finite a there are corrections to Eq.
9, which imply that the firing rates of individual neurons are

+ 0 000
+ 0 00 0 0

+ 0 0 0 0

+0 000 0 0 @0 0 00000000
+ * 0 00 0 0 0
+ 0 * 0* * 0

+ 0 00*00 00 0
+ Ooo 0 0 000 0 00

+* * *-*a

70 0 10 20 30 40 50

60

50 N=20000
c p=200

co 40 a=.2
c ~~~~~~~v=.04
30 T=.22

50 time steps
Z 20

10 b

0

FIG. 2. (a) Firing pattern of 20 randomly chosen neurons out of
a network of 20,000 neurons storing 200 patterns, with a = 0.2, v =
0.04, T = 0.22. *, Spikes at a time proportional to the displacement
along the abscissa, whose total length is 50 basic time cycles. The
column on the left indicates whether the neuron on the corresponding
line is active or passive in the retrieved pattern. (b) Distribution of
number of spikes emitted in 50 time cycles by neurons active in the
retrieved pattern. (c) Distribution of number of spikes emitted in 50
time cycles by neurons passive in the retrieved pattern.

not very sharply peaked about xl and x1, respectively. This
has a rather realistic flavor, provided too-high rates do not
become popular. The simulations indicate that the proposed
model has a self-correcting mechanism against the appear-
ance ofhigh rates. It turns out that the neurons with excessive
activity are those for which 1,,e, < pa-i.e., those whose
coupling in the inhibitory term (Eq. 3) is too weak. These are
also the neurons that, due to fluctuations, participate in fewer
patterns. Because it is the weakly coupled neurons that are
excessively active it is possible to envisage, in the context of
a more comprehensive model that includes learning, a com-
pensatory (Hebbian) effect that, by enhancing the synaptic
strength of those neurons that fire more, will in turn reduce
their mean activity by means of a stronger inhibition.
An interesting finding on the simulations, which deserves

further investigation, is the apparent absence of spurious
states that are attractors with a finite overlap with several
patterns. We have never encountered such stable states even
when the initial configuration has been such a mixture. On the
other hand they appear when one takes the inhibitory effec-
tive field to depend simply on the mean activity of the
excitatory neurons rather than on the weighted averages of
Eq. 3. Another feature that emerges in the simulations is the
much shorter relaxation time for the stabilization of the
average activity of the network as a whole as compared with
the time required for the stabilization of the retrieval overlap.
In the light of the comments below one can understand this
feature as a manifestation of the fact that the patterns are
small valleys in an immense basin corresponding to a pre-
scribed mean total activity.

4.3. Some Qualitative Arguments. The detailed structure of
the synaptic efficacies in the effective field of the excitatory
neurons, Eq. 4, was chosen to ensure that the dynamics ofthe
network be governed by an energy function and in the noisy
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situation by a free energy. This facilitates the analysis and
provides many useful intuitions. The "energy" of a given
configuration {V,} of the excitatory neurons is

E{V} =- 1 E EfV ivj
2Na2 ijij/.Ll,

+ 123 E r qkOiViVjVk. [1ll]
3vN p a ,A, ij,k

Note that even when a network state is totally uncorrelated
with the patterns the energy is of order p. This is due to the
fact that our patterns and states are represented by zeros and
ones. If xg = x,

E/N = p X2 + X3). 112]

Since p is large, this quantity dominates the energy land-
scape, unless the temperature is larger than O(p) and the
entropy takes over imposing x = 1/2. As T decreases the
influence of the energy increases and the mean activity shifts
toward the minimum of Eq. 12, which is at x = v, and where
E/N = -pv2/6.
When a finite number ofxL values deviate from the uniform

value the change in the energy is of order unity. It is these
changes in the energy that can bring about a differentiation
between the patterns. Thus one finds a large range of T in
which the noise is too low to violate the energetic constraint
on the overall activity but high enough with respect to the
barriers created by different patterns. This is the regionp >>
T > TR in Fig. 1. Below TR the noise is low enough for the
detailed structure, inside the large deep well at x'A = x = v,
to become effective. But since v < a the new expectation
value for one of the x'4 values can arise in many different
ways. In the noise range TR> T > TG the barriers between
different states with the same x1 are smaller than the noise and
the network wanders freely in this subspace. This ensures
that Eq. 9 is satisfied in the form

a1- a 1 - a) [13]

Below TG the noise is low enough to allow the barriers
between the different microscopic realizations of a given
value of xl to become operative. There spin-glass effects
come into play and our discussion stops. Inspecting Fig. 1
one observes some further structure. When retrieval appears
it is still a local minimum of the free energy. The paramag-
netic phase, with all xf = v is still the global minimum. The
retrieval state becomes a global minimum at T = TM, above
yet another notable noise level - Tc = P(l - v)(1 - a)/a. At

this temperature the paramagnetic, uniform state becomes
continuously unstable.
These results can be formally derived from the equations

for the minima of the free energy in the replica symmetric
approximation, which is expected to be precise since no
spin-glass effects appear for small a and T > TG, Tc. The
equations, which have been discussed in detail elsewhere
(23), are similar to the equations for the standard model (9).
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of many proposed solutions that would not work. The fertile intimate
contact with biologists we owe to the Institute for Advanced Studies
at the Hebrew University in Jerusalem. The work of D.J.A. was
supported by a grant from the U.S.-Israel Binational Science Foun-
dation.
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